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We have investigated the perturbative solution of the equation 
for the one-particle Green's function for the ideal problem of a 
dense infinite electron gas with neutralizing uniform positive 
background and a static "source" consisting of a fixed positive 
point charge of atomic number Z. The densities appropriate to 
the perturbation expansion are so high as to limit the quantitative 
applicability of the model to very dense metals or dense de
generate astronomical systems such as white dwarfs. Lowest order 
expressions for the non-Hermitian effective Hamiltonian of the 
single-particle excitation spectrum are derived. According to an 
interpretation discussed in a previous paper, the eigenvalues and 
eigenfunctions of the effective Hamiltonian correspond also to 
single-electron energy levels and wave functions associated with 
ground-state properties of the system. Some general properties of 
the induced charge density and of the corresponding polarization 
potential are discussed. The theory predicts the existence of a 
discrete spectrum of bound holes and its disappearance beyond a 
certain limiting value of the density, n: «1/32^Z2a0~

1, where a0 is 
the Bohr radius. This is a consequence of the fact that the lowest 
order polarization potential is a shielded Coulomb potential 
(Yukawa potential) with a range inversely proportional to the 
classical plasma frequency. This potential, derived here by a 
formal limiting process, is well known from the electron theory 

of metals where its derivation has been based on a linearized 
Thomas-Fermi treatment. In order for the discrete spectrum of 
bound holes to have physical reality it is necessary that the level 
width of these holes be less than the spacing of bound levels or less 
than the distance to the continuum limit. This condition is veri
fied, at high densities, by a lowest order calculation of the level 
width in the same formal high-density limit that yielded the 
Yukawa potential. Approximate numerical estimates for the level 
width are then given for a considerably wider range of densities 
and values of Z. It is shown that, to a fair approximation, the 
level width depends on only two parameters: the ratio of the inter-
particle spacing to the Bohr radius and the ratio of the binding 
energy to the Fermi energy, provided that these parameters are 
less than or comparable to unity. It turns out that away from the 
limit of very small binding energies, the plasmon-emission mode 
gives an important contribution to the level width. An interesting 
consequence of the present work is that for low binding energies 
the "orbits" of bound holes may be considerably larger than the 
interparticle spacing. Some physical applications of the results, 
particularly to the problems of electron capture by a nucleus in a 
dense medium, and the x-ray spectrum of atoms in metals are 
briefly discussed. 

I. INTRODUCTION 

WE shall be concerned here with the application 
of a nonrelativistic field-theory method to an 

ideal many-fermion system consisting of a dense 
infinite electron gas at zero temperature, with neutral
izing positive background and a fixed positive point 
charge of atomic number Z.1 

The field-theory method is the widely used Green's 
function approach.2-7 In a previous paper8 some aspects 
of this method were considered for the more general 
problem of a static external potential, V(x), and a 
two-body interaction v(x—xf). In the present example, 
V and v have the forms 

V(x) = -Ze2/r, 

v (x—xf) = e2/1 x—x' | 

(i) 

(2) 
* This research was supported in part by the U. S. Atomic 

Energy Commission. 
1 A brief account of part of this work was published in Bull. 

Am. Phys. Soc. 6, 447 (1961). 
2 V. M. Galitskii and A. B. Migdal, J. Exptl. Theoret. Phys. 

(U.S.S.R.) 34, 138 (1958); V. M. Galitskii, ibid. 34, 151 (1958) 
[translations: Soviet Phys.—JETP 7, 96 and 104 (1958)]. 

8 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 
4 A. Klein and R. Prange, Phys. Rev. 112, 994 (1958). 
6 D . V. Dubois, Ann. Phys. (New York) 7, 174 (1959); 8, 24 

(1959). 
6 V. Bonch-Bruevich and S. Kogan, Ann. Phys. (New York) 

9, 125 (1960). 
7 T . Kato, T. Kobayashi, and M. Namiki, Suppl. Progr. 

Theoret. Phys. (Kyoto) No. 15, 3-60 (1960). 
8 A. J. Layzer, preceding paper [Phys. Rev. 129, 897 (1963)]. 

We shall refer to this article, hereafter, as I. The terminology 
and results of this paper will be freely employed here. 

The model of the dense electron gas has been in
tensively studied for a number of years and is now 
qualitatively well understood.9 The field-theory treat
ment of this problem is more recent.6>10~12 A compre
hensive field-theory analysis of the uniform dense 
electron gas has been given by Dubois.5 This work 
forms an important part of the background of the 
present investigation. 

As is well known, the high-density limit of the 
electron gas corresponds to a lowest order expansion in 
terms of Feynman graphs. This is, of course, the reason 
why so many authors, including the present author, 
have been attracted to this domain of densities. 

High densities here means that the interparticle 
spacing is less than or approximately equal to the Bohr 
radius. Such densities are found only in extremely dense 
metals, which even so apparently lie on the border line 
of validity of the perturbation expansion.5-9 But they 
are also found in some dense degenerate astronomical 
systems, in white dwarfs for example, where the 
electron density gets as high as one desires.13""15 

• We refer to the review article of D. Pines for a discussion of 
this earlier work and for references to the extensive original 
literature. D. Pines, The Many-Body Problem (W. A. Benjamin, 
New York, 1961) (Collection). 

10 J. Quinn and R. Ferrell, Phys. Rev. 112, 812 (1958). 
11 J. Langer and S. Vosko, J. Phys. Chem. Solids 12, 196, 

(1960). I wish to thank Professor J. Lebowitz for bringing this 
paper to my attention. 

12 J. S. Langer, Phys. Rev. 124, 1003 (1961); 120, 714 (1960). 
13 E. Schatzman, White Dwarfs (Interscience Publishers, Inc., 

New York, 1958). I wish to thank Dr. E. Spiegel for bringing 
this work to my attention. 
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One hopes then that in addition to illustrating some 
general features of nonuniform many-fermion systems, 
this model will be of "practical" use in applications to 
the description of properties of metals or white dwarfs 
as influenced by point inhomogeneities of charge and, 
from another point of view, to the description of nuclear 
processes in such dense media as influenced by electronic 
shielding. 

To see clearly how the density of the system and the 
strength of the source potential are related to the 
perturbation expansion, it is convenient to adopt the 
standard units 

fi~in=pF=l, (3) 

where pF is the unperturbed Fermi momentum. This 
is related to the background density, w, through the 
usual formula 

where \F is the Fermi wavelength 

(4) 

(5) 

The unit of length is now the Fermi wavelength and 
the unit of energy is twice the Fermi energy. We 
introduce also the ratio, /3, of the Fermi wavelength to 
the Bohr radius of the electron ao: 

P~\F/a^ (6) 

Then p and Z are the only dimensionless parameters 
in the problem. 

In these units the unperturbed Green's function Go 
and the potentials v and V have the following forms in 
momentum space16: 

Go(p,w)* 
6(l-p) $(p-l) 

(7) 
w—p2/2—ir} w—pt/l+iij 

v(q,w) = brp/f9 (8) 

V(q)=-Zv(q). (9) 

We see that Go is free of the parameters p and Z, 
while v is proportional to P and V to pZ. Thus, we 
verify that the formal conditions for the validity of the 
perturbation expansion are 

(10a) 

(10b) 

14 J. Greenstein, in Eandbuch der Physik, edited by S. Flugge 
(Springer-Verlag, Berlin, 1958), Vol. 50.1 wish to thank Professor 
Greenstein for an informative discussion of problems connected 
with dense astronomical systems. 

15 S. Chandrasekhar, An Introduction to the Study of Stellar 
Structure (University of Chicago Press, Chicago, 1939), especially 
Chap. 11. 

16 We ignore here the complication caused by the shift of the 
chemical potential which may be remedied by shifting the unper
turbed energies and performing the appropriate "mass renormal-
ization" subtractions. See J. Luttinger and J. Ward, Phys. Rev. 
118, 1570 (1960); reference 12; and footnote 52 of I. 

The last condition states that if an expansion in 
powers of the source potential is also to be valid the 
interparticle spacing must be comparable or smaller 
than the "Bohr radius" of a hydrogenic atom of atomic 
number Z.17 

We shall be mostly concerned here with the single-
particle excitation spectrum of our model. For the 
uniform system this question has been considered by 
several authors6,18 and we shall mainly consider here 
effects related to the presence of the additional point 
"source." 

In order to investigate this problem we shall obtain, 
via a Feynman diagram expansion, lowest order 
expressions for the effective Hamiltonian describing 
single-particle excitations and entering into the so-called 
Schwinger equation for the one-particle Green's 
function G(x,*;#7')-19,3'7,8 

For a static external field the energy transform of the 
Schwinger equation takes the operator form 

[w-^/2-F(a?)-S(w)]G(w) = l, (11) 

where G(w) is the frequency transform of the Green's 
function operator and 2(w) is the transform of the 
so-called self-energy operator. 

2(ze>) is the sum of a local, Hermitian, and w-inde-
pendent polarization potential P(x) and a mass operator 
or exchange potential M(w). (The exchange potential 
is nonlocal, non-Hermitian and energy dependent.) 

The polarization potential P(x) is the classical field 
due to the average distribution of electrons and may 
be written in the closed form 

P(*> . - . / * - < M*W, (12) 

where p(x) is the number density of electrons at the 
point x, the sum of the average or background density 
and the induced density. 

In terms of Feynman diagrams, P(x) is given by the 
totality of polarization insertions at a single point in 
an electron line. 

The exchange potential is determined by the remain
ing class of insertions. The lowest order expression for 
M(w) [see Eq. (40)] is the familiar exchange potential 
first derived by Bloch.20 

As is well known, lowest order expressions for the 
induced charge density, in an approximation linear in 
the external potential, can be written down on the basis 
of various approximations to the static dielectric 

17 For some of the results obtained here, however, the restriction 
(10b) may be dropped (see Sec. 4). 

18 A. Glick and R. Ferrell, Ann. Phys. (New York) 11, 359 
(1960). 

19 J. Schwinger, Proc. Natl. Acad. Sci. U. S. 37, 452,455 (1951). 
20 F. Bloch, Z. Physik 57, 545 (1929). See also H. Bethe, in 

Eandbuch der Physik, edited by S. Flugge (Verlag Julius Springer, 
Berlin, 1933), Vol. 24, Part 2, p. 484, and reference 10. 
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constant of the electron gas.21"23,5 More recently, Langer 
and Vosko11 have derived these expressions within the 
context of the exact nonlinear field theory. 

In the simplest of these approximations, commonly 
known as the pair approximation, the momentum space 
transform of the induced number density, pt-(#

2), takes 
the form 

P ^ H Z / ^ V C ^ + Z W ) ] , (13) 
where 

6 i (g 2 )= - :»H) In 
l+q/2 

1-5/2 
(14) 

and the Fourier transform has been normalized accord
ing to the relation 

f(q)= fW'ffix. (15) 

Roughly speaking, the corresponding charge density in 
position space is of the form associated with a screened 
Coulomb potential. Langer and Vosko,11 however, 
made the important observation that the logarithmic 
singularity of pi(g2) at the momentum transfer q—2 
(twice the Fermi momentum) gives rise to a small (of 
order 0) oscillatory long-range behavior of the induced 
density in position space of the form CR==|#|) (see 
Lighthill24): 

f COS2JR sin2i? 1 
p(*)~0\a(fi) +b(fi) (InR+c) . (16) 

i?3 
RA 

On the same grounds,24 the polarization potential, 
P(x), must also have this asymptotic behavior. 

In the presence of an attractive external potential, 
a new type of single-particle excitation is expected to 
enter. This is a "bound hole" localized around the 
source and associated with a bound single-electron 
energy level occupied in the ground state. The real 
and imaginary parts of discrete complex eigenvalues of 
the homogeneous Schwinger equation correspond to the 
energies and lifetimes of such bound holes.2""8 

As a physical example of such a bound hole excitation 
we cite the case of orbital electron capture by a nucleus 
in a dense medium. 

Since the effective potential, "K+2(w), is of shielded 
rather than pure Coulombic form, the number of bound 
levels should be finite rather than infinite. Since the 
range of the shielded potential decreases with increasing 
particle density, the number of bound states should 
decrease in this process and one anticipates that there 
will occur a limiting density, for given atomic number 
Z, beyond which no bound states are possible. This 

21 J. Lindhard, Kgl. Danske Videnskab. Selskab. Mat.-fys. 
Medd. 28, 8 (1954). 

22 P. Nozieres and D. Pines, Nuovo Cimento 9, 470 (1958). 
23 J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957): 

A243, 336 (1957); A244, 199 (1958). 
24 M. J. Lighthill, Fourier Analysis and Generalized Functions 

(Cambridge University Press, New York, 1960), Chap. 4. 

type of behavior would be consistent with the quali
tative phenomena of "pressure ionization" in dense 
matter.25-27 

The present analysis confirms the above conjectures 
though, because of the mathematical complexity of the 
problem, they cannot be regarded as rigorously 
established. 

These questions are considered quantitatively in 
Sec. 3 where lowest order expressions for the self-energy 
operator are given. We derive also lowest order expres
sions for the lifetimes of bound holes. 

In Sec. 4, rough numerical estimates are given for 
the level width of bound holes over a considerably 
wider range of densities and values of Z than in the 
previous limiting case. It turns out that away from the 
limit of very small binding energies (relative to the 
Fermi energy) the plasmon-emission process gives an 
important contribution to the level width of bound 
holes. 

A summary and discussion of the results is given in 
Sec. 5. In that section we also consider briefly some 
physical applications of the results obtained here for 
the single-particle excitation spectrum. 

2. PROPERTIES OF INDUCED CHARGE DENSITY 

We consider first some general properties of the 
induced charge density and the corresponding polar
ization potential of the Schwinger equation. We include 
a brief discussion of the derivation, by our methods, of 
the pair-approximation result (13). 

Let us first dispose of the complication of the uniform 
positive background. Actually, we should have included 
in our Feynman diagrams external-potential vertices 
due to the uniform background. Now, since the density 
of the unperturbed system is the same as that of the 
background, the vertex due to the latter [Fig. 1 (a)] is 
cancelled by the lowest order polarization diagram 
[Fig. 1(b)]. Furthermore, since the density of the 
interacting and unperturbed systems is the same, in the 
absence of the source, the lowest order polarization 
diagram has, in fact, the same value as the totality of 
source-free polarization diagrams at the same point 
[Fig. 1(c)]. Thus, we may eliminate the uniform 
background from consideration provided that we adopt 

-CH 

FIG. 1. Diagrams illustrating the cancellation of the effect of 
the uniform background. The cross represents the potential due 
to the uniform background. 

26 J. C. Slater and H. M. Knitter, Phys. Rev. 47, 559 (1935), 
26 P. M. Morse, Astrophys. J. 92, 27 (1940), 
27 E. Schatzman, reference 13, Chap. 4. 
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the following simple convention.28 All vertices due to the 
uniform background and simultaneously all source-free 
polarization insertions in an electron line are to be 
ignored. 

This convention, of course, is equivalent to sub
tracting out the unperturbed charge density, p0, from 
the total density p in all expressions involving p, a type 
of renormalization procedure which is appropriate to 
this problem. 

We turn now to a consideration of the induced charge 
density. The direct potential, defined here as the sum 
of the external and polarization potentials, can be 
written in the operator form 

where F, as usual, is the external potential. 
More explicitly, we have 

Vd (x) = / W K-1 (x,xf) V (xf). 
' • / • 

Or, in momentum space, 

- / 
Vi(q)= ffifK-Kqrf)Vtf). 

(17) 

(18) 

(19) 

K~l is itself a functional of the external potential V. 
The inverse operator K will be called the generalized 
dielectric constant. If the external potential is spheri
cally symmetric, it is easy to see that K is rotationally 
invariant. In the limit Z —->0, K is diagonal in momen
tum space and K(xyx

f) is a function of (x—x')2. 
The quantity K~l (q}q

f) corresponds to the totality of 
polarization diagrams with initial dotted line labeled 
by q and a final "source" vertex V(q') as illustrated in 
Fig. 2, in addition to a simple vertex corresponding to 
the external potential alone. These polarization dia
grams can be broken down into diagrams involving 
repeated insertions in dotted lines of strongly connected 
diagrams, as in the example of Fig. 2(b). The totality 
of such strongly connected insertions will be called Q. 

I t is easy to verify that Q is a Hermitian operator. 

FIG. 2. Polarization dia
grams with (a) a single 
strongly connected inser
tion, (b) two strongly con
nected insertions. 

-o 
(a) 

0-<D~ 
(b) 

281 wish to thank Professor M. Ruderman for the idea of 
looking at the cancellation in this simple way. 

For spherically symmetric external potential, Q, like K, 
is rotationally invariant. Furthermore, Q is a real 
symmetric matrix in position space. This last property 
guarantees the reality of the induced charge density 
when using the dielectric constant approach.29 

For suitably normalized Q one has then for K~l the 
operator expansion 

K~1=l-vQ+vQvQ-vQvQvQ+ • 

whose sum is 

(20) 

or 

K~l=(l+vQ)-K (21) 

Thus, the generalized dielectric constant has the form 

K=l+vQ. (22) 

Frem (17) and (22) one can write also 

(l+vQ)Vd=V, (23) 

(Tl+Q)Vd=v-W 
= - Z . (24) 

The induced number density p* is obtained by taking 
the negative Laplacian of the induced potential. Thus, 
we obtain from (17) and (21) 

{q\p>) = q\q\{K-i-\)V), 

/ I VQ \ 
(q\P<)=-qHq\——V). 

\ \l+vQ / 

(25) 

(26) 

Let us consider first the subclass Q of Q consisting 
of source-free diagrams. Since Q is diagonal in mo
mentum space, (26) becomes simply 

(q\p>)=-
q'v(q)Q(q) 

i+v(q)Q(q) 
<q\n (27) 

Since v(q) = ̂ /q2 and V(q) 
(27) that 

Pi(q) = 4x^Z0(?) /C? 2 +47r^(?)] , 

Zv(q), we see from 

(28) 

where the Fourier transforms p(q), V(q) are normalized 
as usual according to the relation 

> - / / ( ? ) = / / ( » ) e i 9 1 ^ . (29) 

Assuming that Q(q) approaches a limit different from 
zero as q—•» 0, as we shall see is, indeed, the case, we 

29 These properties of Q follow from similar properties of the 
zero-frequency transform, Z), of the "density propagator" D(t—t'). 
The latter is defined by (x|D(t-t) \x')=(Tp(xtt)p(x',t')) where 
P (*)=** (*)*(*). 

Except for a real constant of proportionality, we have, namely, 
Q=D(l+vD)-l-D-DvDl . Note also that K~l=l+vD. 

The stated properties for D follow from the representation 

;£ (x\D[x') = c\im / dr e~^{e(r)(p(x)e^H-E^P{xf)) 

where c is a real constant. 
+J( - r ) (pM«- '^ 'pW)j , 
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q,w q,w 

FIG. 3. Feynman diagram 
for Qo(q,w). 

note, in particular, from (28) and (29) that 

0.(0)=* fPi(%)d?x~Z. (30) f>A 

This expresses the fact that the total induced charge 
exactly cancels the source charge, leaving the system, 
in this approximation at least, electrically neutral. We 
must expect that (30) holds true in the exact theory 
also since charge neutrality is a necessary condition for 
the electrostatic stability of the ground state.3° We 
shall return to this point later. 

The derivation of the neutrality condition (30) points 
up the fact, characteristic of the long-range Coulomb 
interaction, that the conventional perturbation expan
sion of p in powers of fi, which would regenerate a 
series of the type (20), is invalid for q2</3. As is well 
known, the terms of this series exhibit successively 
stronger "infrared" divergences at q2=0 which cancel 
when the sum is taken. A correct perturbative procedure 
is, instead, to make the same lowest order approxi
mation to Q in both numerator and denominator of 
(26) leaving the denominator unexpanded. 

The lowest order expression for p;, in the above sense 
is obtained by making the replacement Q—*Qo(q) in 
(27) where Qo(q) corresponds to the limit w—> 0 of the 
simple "bubble" diagram of Fig. 3, denoted by Qo(q,w). 

The correctly normalized expression for Qo(q,w) is 

Qo(q,w)~ (dmwrG*{k,wf)G*(q+k,w+w'). (31) 
(2T) 4 J 

For w different from zero Qo has an imaginary part 
which contributes to the lowest order lifetime of a 
single-particle excitation, as discussed in the next 
section. According to Dubois5 and Lindhardt,21 Qo(q,w) 
has the following value: 

ReQo(q,qu) 

•(iHV2)+l-| i f l r / q\2i r(«-
= — H — 1-(«H--J In I 

2*»l 2ql \ 2 / J L(f*+g/2)-lJ 

-&-(-D"M^]}-« 
30 At first sight the requirement of charge neutrality may be 

puzzling since one imagines that an extra charge Ze has been 
inserted (adiabatically) into an enclosed system which was 
originally neutral. However, it must be kept in mind that in 
calculating local properties, such as the density, we are really 
dealing with a limiting process in which the volume of the con
tainer becomes arbitrarily large while attention is focussed on a 
fixed point of space. In this case, boundary effects do not appear 
in the final result and, in particular, charge neutrality will be 
preserved, 

1 2 
ImQQ(q,qu) = — \u\, | * | + - < 1 , 

2T 2 
(33a) 

-i-lK'-'-i)' 

=o, 

\i~\u\ 
12 

> 1 . 

< 1 < - + | M | , (33b) 
2 

(33c) 

In the limit w —* 0, the imaginary part of Qo disap
pears and one obtains from (32) 

2r 1/ 5
2 \ 11+5/21-| 

4^o(g)=61(32)=- 1 + - 1 - - In - . (34) 
wL q\ 4 / \l — q/2\J 

Substituting this into (28) we obtain the familiar 
"pair-approximation" result (13) for the induced charge 
density. 

Before proceeding to the discussion of single-particle 
excitations we return briefly to the question of the 
neutrality of the system in the exact theory as pledged 
earlier. We have already seen, formula (30), that 
neutrality is achieved in the linear approximation in 
which Q is replaced by the totality of source-free 
diagrams. 

Let us separate out the source-free approximation 
by writing Q and Va in the form 

e=o+e', vd=?+v, (35) 

where V, proportional to Z, is the solution of (23) 
with Q=Q. V involves higher powers of Z. The lowest 
order diagram for Qr is shown in Fig. 4. 

From (23) one easily derives the following equation 
for V in terms of Q, K, and Q': 

V'=-(v-i+QyiQ'V. (36) 

In lowest order, corresponding to the approximation 
Qo for Q, V has the general form 

fo(?) = const/[g»+/Ji1(?)] = y(8»), (37) 

where b\ and b' are bounded functions of q2 [the exact 
form of b\ is given in (34)]. We note also from (34) 
that Qo(q2) is a bounded function of q2. 

It is now easy to show from (36) that the induced 
charge density corresponding to V will not affect the 
neutrality relation (30) provided that suitable bounded-
ness requirements in momentum space are imposed on 

V(q-q') 

TO 
FIG. 4. Lowest order Feynman 

diagram for Q'. 

file:///i~/u/
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V(p-p') 

p,u p,u 
(b) 

FIG. 5. Lowest order mass operator diagrams. 

Q, F, and Q' which are suggested by the lowest order 
results (34) and (37). 

Let us assume, for example, that the exact Q{q) is a 
bounded function with 0(0)^0. It then follows that 
the exact V(q) can be expressed as a bounded function 
of q2 times the factor (q2+c)~1 for some positive C5*0: 

V(f) = b(f)(?+c)-K (38) 

The same is true, of course, of a factor (̂ ~~1+Q)~1. 
Let us assume now that a series expansion of (^~1+Q)~1 

about (v~l+Q)~l has the usual desirable convergence 
properties. Then (as one easily sees by induction on the 
^th term of the expansion) in order for the total charge 
induced by V to be zero, it is sufficient to assume in 
addition that Q' has the property 

/ q'2+c 
Q'(q,q')\^b{f), (39) 

for all positive c^O, where b(q2), as usual, denotes a 
bounded function of its argument. 

This is true, for example, if Qf(q,qf) can be expressed 
as a bounded function times [m(q—q')2+c]~1, where c is 
a positive or zero constant. This Coulomb type of 
dominating behavior is suggested by the lowest order 
diagram for Qf. (See Fig. 4.) 

While the verification of these properties is a difficult 
matter, even within the framework of perturbation 
theory, it is nevertheless satisfying that plausible 
conditions of this kind, guaranteeing charge neutrality 
for the exact theory, can be formulated. 

3. LOWEST ORDER EQUATION FOR SINGLE-
PARTICLE EXCITATIONS 

We shall now consider in some detail the lowest order 
equation describing single-particle excitations. This is 
obtained by using the pair approximation (13) for the 
electron density in the Schwinger equation (11) to
gether with the lowest order "mass operator" term 
corresponding to diagram (a) of Fig. 5. 

Diagrams (b) through (e) of Fig. 5 are formally of 
one higher order in 0 or Z/3 than diagram (a), due to 
the presence of an additional interaction line or an 
external potential. It is not difficult to show that 
diagrams (a), (b), and (c) do not have imaginary parts. 

Thus, in particular, the imaginary part of the mass 
operator enters only in order #2.31 This circumstance 
permits one to neglect the non-Hermitian part of the 
effective Hamiltonian in lowest order. That is, single-
particle excitations are stable in lowest order. 

Diagram (a) is easily evaluated [see formula (77) of 
I ] . The resulting expression is, in fact, identical with 
the familiar lowest order exchange contribution to the 
single-particle energies in the source-free case.20 

(p\Ma\p')=Ma(p)8*(p-n 

Ma(p)=-I3h(p2), 

(40) 

(41) 

HP") 
2W W-

- « [ l - | # - * l ] 

l-p\ 

L 4/> 
•In 

1+P 

1-p 
+i (42) 

As before, b(x) denotes a bounded function of x.32 

Note that Ma is independent of w. Ma(0), like the 
mass renormalization term in quantum electrodynamics, 
which it formally resembles, represents a constant 
(state-independent) shift in the single-particle energies 
which is the same for free and bound electrons in the 
medium. Unlike the Q.E.D. case, however, this shift 
has observable physical consequences.33 

According to the foregoing discussion, the complete 
lowest order equation for single-particle excitations 
reads as follows: 

{ w ' -^ /2+/J[4 , (^) -6 2 (0) ]}^(p) 

zp d?pr 

where 
2T2J q'+Phiq2) 

+»(P')> (43) 

(44) 

and bi{q2), b2(f) are given by (13) and (42). This 
equation describes an independent particle model in 
which single electrons move in an effective potential 
consisting of a direct potential, determined by the pair 
approximation for the total density of electrons, plus a 
momentum term which in a quadratic approximation 
simply changes the effective mass of the electron (and 
shifts all energies by a constant amount). 

Of particular interest are the bound-state excitations, 
if any, associated with discrete negative values of w\ 
It is physically clear that these excitations must 
correspond to bound holes rather than particles. To 
confirm the hole character of the excitations and 
estimate the lifetime of the holes, one must determine 

31 This formal estimate is confirmed by the detailed calculations 
given later, which show that the leading order is in fact 02 ln£. 

32 It is interesting to note that the functional forms of b2i and 
bu are related: foG^^i&i((2A;)2). 

33 The shift should enter, for example, into the energetics of 
electron capture by a nucleus in a dense medium. 
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the sign and magnitude of the imaginary part of the 
effective Hamiltonian. We shall return to this point 
later. 

To see whether bound states occur, it is convenient 
to introduce a further approximation in which the 
bounded functions bi(q2) and bi(p2) are replaced by 
their values at zero argument. (The nature of this 
approximation will be investigated more closely later 
on.) The direct potential now becomes a Yukawa 
potential and the mass operator term simply reduces 
to a constant. Thus, in this approximation, Eq. (43) 
becomes, after taking the position space transform, 

{ « / - J » / 2 - (ftZ/r) e x p [ - (4ftHU2rl}h(r) = 0, (45) 

where ^0 denotes the approximate wave function. 
The radial equation corresponding to (45) is of the 

general form (#=f^) , for S states: 

(d2<j>/dr2) + [ > + b (e-r/r)~}j> = 0. (46) 

This equation has been investigated by a number of 
authors in connection with the two nucleon problem34'35 

and the problem of Debye shielding in plasmas.36,37 I t 
has been noted that unless the parameter b exceeds a 
certain critical value there is no bound state. According 
to the numerical work of Hulthen and Laurikainen,34 

the condition for binding is 

6>1.68. (47) 

This condition, translated for Eq. (45) reads 

Z2ft> (1/TT) (1.68)2^0.898. (48) 

Thus, if the density is too high, binding is destroyed. 
The condition (48) is in competition with the condition 
(10) for the validity of our perturbation expansion. 
We see that for both conditions to be met, the density 
(or Z) must lie in the range determined by 

0.898Z-2<ft<Z~\ (49) 

I t should be emphasized that the Yukawa approxi
mation is not adequate for the wave function either 
very close to or very far from the source. This is 
because the approximation disregards the high mo
mentum components of the effective Hamiltonian and 
also the logarithmic singularities, in momentum space, 
of the direct potential and the mass operator due to the 
Fermi momentum cutoff. 

In this connection, it is interesting to note that the 
logarithmic singularity at the Fermi momentum of the 
exchange potential may be expected to give rise to an 
oscillating long-range behavior, of order ft, similar to 
(16), for the wave functions of the discrete spectrum. 

34 L. Hulthen and K. V. Laurikiainen, Revs. Modern Phys. 
23, 1 (1951). I wish to thank Dr. H. Nickle for bringing this 
reference to my attention. 

36 J. Blatt and V. Weisskopf, Theoretical Nuclear Physics 
(John Wiley & Sons, Inc., New York, 1952), Chap. 2. I would 
like to thank Dr. L. Rosenberg for informing me of this reference. 

36 G. Ecker and W. Weizel, Ann. Physik 17, 126 (1956). 
37 G. Harris, Phys. Rev. 125, 1131 (1962). 

Thus, the bound-state wave functions are considerably 
more diffuse than in the Yukawa approximation. 

Nevertheless, the Yukawa approximation is, in a 
certain sense, a well-defined lowest order limit of (43). 
We have in mind a particular limit procedure in which 
ft tends to zero while Z2ft is held fixed. (Under these 
circumstances Zft will also approach zero.) 

To show this formally, let us perform the scale 
transformation 

p->ftZp, r - > ( £ Z ) - V . (50) 

The "Schrodinger" equation (43) then becomes 

lw/-p2/2+y-WPyp2)~b2(0)J]is(p) 

1 r &pf 

= — / +.(p'), (51) 
2TT* J q2+y~Wftyq2K 

where 
J^ftZ2, (52) 

and 
w/ = [w+ftb* (0) ] / (ftZ)2 = w.+y-lb2 (0). (53) 

Here, \f/s is the scaled wave function and w8 = w/(ftZ)2. 
If, now, ft and Zft approach zero while y is held 

fixed, we obtain in the limit the equation 

1 r dHf 

[>.'-#V2>.(#) = — / T-r+.it'). (54) 
2TT2 J g 2+4(x7)- 1 

In position space this is 

{w/-f/2- (1/r) e x p [ - (4/7r7) l /V]}^(r) = 0. (55) 

Equation (55) is, indeed, the scaled form of (45). 
I t is useful to note the conversion formula giving w 

in rydbergs in terms of the dimensionless quantity ws 

in (54): 
w=2Z 2 w s Ry. (56) 

We observe also that the continuum starts at w / = 0, 
which corresponds, from (53), to a value of ws given by 

ws,o= -y~lb2(0) = - ( 2 / T ) ? - 1 . (57) 

We see that the limit of the continuum of single-
particle energies is "pushed down" by the interaction 
(see references 25-27). 

We have shown above that the Yukawa approxi
mation (55) is a formal limit of Eq. (51) as ft and Zft 
approach zero with y = Z2ft fixed. I t is legitimate to 
inquire now as to the validity of this formal limiting 
process. 

Unfortunately, a rigorous mathematical investigation 
of this important point is a difficult matter, beyond 
the scope of the present paper, and we must content 
ourselves with comments of a heuristic nature.38 

We restrict attention to the discrete spectrum since 
this is the simpler case to discuss. I t is, in fact, mis-

38 This point could be settled by numerically solving Eq. (51) 
for a range of values of fi and y. 
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leading to talk about limit processes for continuum 
wave functions outside the context of particular matrix 
elements of interest. 

For the eigenvalues and eigenfunctions of the discrete 
spectrum, it is reasonable to assume that the above 
formal limit process is valid. We refer here to the 
"scaled" form (51) of the original Eq. (43). 

First, we note that there is no difficulty in formally 
applying ordinary lowest order perturbation theory for 
the discrete eigenvalues and eigenfunctions of (51) and 
that this gives results in agreement with the above 
assumption. This, however, is not a very reliable test.39 

In order to rigorously establish the validity of the 
passage from (51) to (54) for a region of values of w8' 
about a single point of the unperturbed discrete spec
trum it is sufficient to show, according to a theorem of 
Riesz and Sz-Nagy, that the perturbed "Hamiltonian" 
operator approaches the unperturbed one "relatively 
uniformly" as the perturbation parameter (in our case 
the parameter f$) approaches zero.40 

This property of relative uniform convergence is 
apparently assured in our problem by the bounded 
nature of the functions b\ and &2 and the good bounded-
ness properties in momentum space of the Yukawa 
potential.41 

I t should be noted that the source-induced Yukawa 
potential which we have justified here by a formal 
limiting process has long been known and used—for 
the impurity problem—in the electron theory of metals, 
where its introduction has been based on a linearized 
Thomas-Fermi treatment. (For a recent discussion, 
see Pines.42 The original derivation is apparently due to 
Mott.43) 

This contact with the semiclassical Fermi-Thomas 
method permits one to ascribe a more extended region 
of validity to the Yukawa potential than emerges from 
the present formal analysis. 

An important condition for the validity of the semi-
classical analysis is that the average potential due to 
the source be much less than the Fermi energy. We 
might guess then that our special formal limiting 

39 It gives the wrong answer, for example, in the case of the 
Stark effect. 

40 F. Riesz and R. Sz-Nagy, Functional Analysis (Frederick 
Ungar, New York, 1955), translation of 2nd French ed., Chap. 9, 
p. 372. The operator sequence An is said to converge relatively 
uniformly to the (Hermitian) operator A if 

UA-AJfW 
l.u.b. »0 

1 H/ll+M/ll 
where l.u.b. means least upper bound and wrhere / ranges over 
the Hilbert space. 

41 We argue roughly that the numerator of the relevant ratio 
(see footnote 40) approaches zero with /3 except for functions / 
concentrated in a high momentum region of order 1/0. However, 
for these / , the denominator becomes very large, like 0~2, and, 
therefore, the ratio still approaches zero dike £2). 

42 D. Pines, in Solid State Physics, edited by F. Seitz and D. 
Turnbull (Academic Press Inc., New York, 1955), Vol. 1. 

43 N. F. Mott and H. Jones, The Theory of Metals and Alloys 
(Oxford University Press, New York, 1936), p. 87. 

process in which fi —» 0 with y fixed is actually valid 
in the case of weak binding—and high densities—that 
is, when the binding energy of the bound state in 
question is sufficiently small compared to the Fermi 
energy. This speculation is strengthened by the follow
ing level-width estimates, particularly of Sec. 4, where 
at the same time a more precise definition of the 
"weak binding" limit is provided. 

Calculation of Level Width 

Let us now consider in more detail the imaginary 
part T of the eigenvalues of the exact Eq. (11) in the 
bound-state case. We must show, in particular, that 
the sign of T is that appropriate to holes rather than 
particles. Furthermore, if these bound excitations are 
to be discrete, T must be smaller, though not necessarily 
much smaller, than the separation between bound 
levels.44 

Actually, the question of the sign of T in perturbation 
theory can be answered on general grounds since it is 
known (see I, Sec. 2) that the non-Hermitian part of 
S(w) is a negative operator if W<IJL and, in particular, 
if w is negative. (Here, JJL is the chemical potential.) 
As is easily seen this property must be true also in 
lowest order perturbation theory. Of course, explicit 
calculation must give the same result. 

As we have already remarked, the lowest order 
imaginary part is due to diagrams (d) and (e) of Fig. 5. 
Thus, r is given in the lowest order by the imaginary 
parts, Td and 1%, of the expectation values of Ma and 
Me using wave functions that are solutions of Eq. (43). 

Actually, the familiar problem of the "infrared 
divergence" at low momentum transfer forces us to 
consider along with diagram (d) diagrams with an 
arbitrary number of bubble insertions. Since the lowest 
order mass-operator diagram has no imaginary part, 
we can add this to Ma without affecting IV If we do 
this, then the net effect of all these bubble insertions is 
to replace the interaction, v, of the lowest order diagram 
by the "effective interaction" VKQ"1 where K0~1-\-VQQ 
is the time-dependent dielectric constant in the pair 
approximation. 

Physically, diagrams M* and Me correspond to the 
creation of electron-hole pairs or plasmons in the 
decay of a single-particle (hole) excitation to a lower 
state of excitation. This has been shown explicitly by 
Dubois, who has introduced effective momentum 
dependent coupling constants for these modes of 
decay.45 (See also Quinn and Ferrell,46 and Quinn.47) 

44 This is a physical criterion corresponding to the requirement 
that the linewidth of the emission spectrum for a transition 
between bound holes be less than the transition energy. We recall 
that e~2 | r | ' is the probability for decay of the excitation in time t. 
See I, Sec. 2. 

46 D. Dubois, reference 5. See especially formulas (3.10), (3.12), 
(3.13), (1.14) and (1.15) of the second article. A number of mis
prints in these formulas have been corrected here. 

48 J. Quinn and R. Ferrell, reference 10. 
47 J. Quinn, Phys. Rev. 126, 1453 (1962). 
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Dubois has pointed out also that Me is the exchange 
interference correction to the pair portion of M&- The 
plasmon is stable in the pair approximation and the 
plasmon decay mode arises mathematically as a delta 
function contribution to Td from a pole of the inverse 
dielectric constant at the plasma frequency. 

In writing the decay probabilities in this form, one 
adopts an S matrix and Feynman diagram point of 
view conventional in relativistic field theory. The initial 
state is a hole, in our case a bound hole, and the final 
state is a free hole plus either an electron-hole pair or 
a plasmon. Of course, in this many-particle case all 
initial and final states are actually unstable. The pair 
"coupling constant" g(p,q) given below in (64) is 
essentially the momentum-energy transform of the 
time-dependent effective interaction, analogous to the 
photon propagator of electrodynamics. The plasmon, 
treated as a boson, is coupled directly to the electron 
field by the coupling constant gp(q) given in (66), which 
arises from the residue of the pole of the effective 
interaction at the plasma frequency. 

Since Md and Me are diagonal in momentum one 
can write Td and Te as weighted averages, with weight 
function \^w(p)\2 of the transition rate for the decay 
of source-free hole excitations of definite momentum, p. 
One can then simply take over Dubois' expressions for 
the latter. The only unusual point in this regard is 
that the energy, —70, of the "free" hole excitation of 
momentum p is positive, since we are actually dealing 
with a hole in a bound state. However, momentum and 
energy conservation apply just as in the true free-
excitation case. 

Thus, we have 

Ti=fd*p\Mp)\2Ti(P), *=d,e. (58) 

The transition rate Ti(p) can be written as an integral 
of a differential transition rate Ti(p,q) corresponding 
to a definite momentum transfer, q, upon de-excitation 
of the hole to a (true) free-hole excitation with mo
mentum p— q: 

Tt(*) = j*qlO-\p-q\lF<(P4)- (59) 

For Ti(p,q) we take over bodily, with only minor 
alterations, the expressions and terminology of Dubois45: 

r*.Pr(p,q) = —f(p,q)[ *Pi 

Xtdtf+q-pi-A), (60) 

r«(/w)=—;(-i)*(M) [ <?Pi 
« r J\pi\<K\ti+t\ 

XgiP&Ktf+q-pi-A). (61) 

Here Q is the "exchange momentum transfer" (for 
holes). 

Q^px-P, (62) 

1 
r<*,Pi (p,q) = —SP 

8x2 

8(A-A(g)) 
2(<?) „ , ^ e(q.-q). 

2A(5) 
(63) 

The coupling constants for pair creation g (p,q) and 
g(p,q) are given by 

(27T)-Y(P,q) = i 03/Tcyy I K0(q,A) I (64) 

where KQ as before is the dielectric constant in the 
pair approximation. 

In the formulas above, A is the energy transfer in 
the de-excitation of the hole: 

A=\tf\ + (p-q)*/2. (65) 

Here, we have noted that since the "mass renormal-
ization" constant w0 of formula (57) affects both initial 
and final hole excitation states only the "renormalized" 
energy w' enters in the expression for energy transfer. 

In the approximation we are considering, KQ may be 
replaced by unity in the expression for Te since there is 
no infrared divergence at low q values for the exchange 
correction, 

In formula (63), gp(q) is the plasmon coupling con
stant and A(q) is the momentum-dependent plasmon 
frequency. According to Dubois45 

2(q) 3AP
4 

(2ir)3 8TT?: 

A2(?)=A 

5 o2 

1+ 
L 9A„2 

12 9
2 

H 
5 AP

2 

(66) 

(67) 

where Ap, the classical plasma frequency, is given, as 
usual, by 

Ap= (4/3/37T)1/2. (68) 

qc is the plasmon cutoff momentum determined by the 
equation 

Mqc) = &c2+qo (69) 

An alternative closed expression for TdfPT(p,q) may 
also be given and is often more convenient48: 

r<*.pr(M) = ~ 
2 /PlmQoiqA) 

T \q2+ATfiQ0(qA)\ 
(70) 

The real and imaginary parts of QQ are given in formulas 
(32) and (33). 

An exact analytic evaluation of Td and 1% is not 
possible. Let us consider first the special lowest order 
approximation defined previously in which fi and Z 

48 Compare formulas (3.6) and (3.20) of Dubois, reference 5. 
Dubois' derivation of (3.20) is valid also in the present bound-
state case. Let us note that these closed expressions can be used 
to derive expressions (60), (61), and (63) without using the 
5-matrix approach. 
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approach zero while 7 = Z 2 £ is held fixed at a value 
greater than that needed for binding. We shall call this 
the fixed-7 approximation. 

In the fixed-7 approximation the (relative) binding 
energy, w, is of order ft as one sees from Eqs. (S3) and 
(54). Similarly, the wave function "selects" (relative) 
momenta of order 0 l / 2 . Thus, as ft —» 0, the level width 
tends to a value appropriate to a source-free hole 
excitation of zero energy and momentum. 

We shall consider only terms of order 02 (or bigger) 
which is the nominal order of diagrams Md and Me 

(two vertices). Actually, Td is of order j#2ln/5 in the 
fixed approximation due to an infrared divergence at 
low q values. 

On the other hand, it is not diificult to show that the 
plasmon decay mode is of higher order than fi2 in the 
fixed-7 approximation. Indeed, the energy-momentum 
relation of a plasmon forbids the decay of a strictly 
zero momentum and energy hole excitation to a lower 
state of excitation via the creation of a single plasmon. 
Even when one takes into account the distribution of 
momenta permitted by the wave function, this "phase-
space suppression" turns out to be sufficient to make 
the plasmon decay mode of technically higher order in 
P than the pair contribution.49 

After a short calculation, details of which are given 
in Appendix 1, we obtain the following lowest order 
results for the imaginary part of diagrams of the type 
Md and Me, in rydbergs50: 

| r * = [ a l n ( l / f l + 6 ] R y , (71) 

§ r e = c R y , (72) 
where 

<Z=1/TT, 

b= l / * [ - l - m ( 4 / 7 r ) + (7T/2MI w.' | + | ( ^ 2 ) 7 ) ] , 

c = - i r / 2 4 . 

Here the symbol ( )7 denotes the expectation value 
with respect to scaled Yukawa-potential wave functions, 
solutions of (55), for fixed 7. Note that the constants 
a and c are independent of the bound state and are, in 
fact, the same as for a source-free excitation with 

For the total width of the excitation level in the fixed 
approximation one then obtains the result 

i r = ( l /x )Dn( i r /40 ) -1 - UY24) 

+ ( T / 2 ) 7 ( | w / | + 4 < ^ > 7 ) ] R y . (73) 

We see that as the density increases indefinitely with 
7 held fixed, the absolute level width will approach 
infinity, like ln0. Since from (56), with fixed 7, the 
binding energy is of order 1/(3 in absolute units (ryd-

49 A further justification of the neglect of the plasmon contri
bution to the linewidth to lowest order in 0 is given in the next 
section. 

50 The leading ln£ term was announced at the Chicago meeting 
of the American Physical Society, November, 1961. 

bergs), the bound-state level spacing Awn also ap
proaches 00 and in a manner such that the ratio 
(T/Awn) approaches zero like 0 ln/3. This assures the 
existence of a discrete spectrum in the limit /3—»0 
with 7 fixed. 

One must demand also that the first bound level be 
separated from the continuum by an amount greater 
than the linewidth. This is clearly also guaranteed in 
the limit 0 - » O . 

4. SOME NUMERICAL ESTIMATES 

Although the result just given for the level width in 
the limit fi—*0 with 7 fixed is interesting from the point 
of view of establishing with some degree of mathemati
cal rigor the actual existence of the discrete spectrum of 
bound holes, the region of quantitative accuracy of this 
formula is limited to extremely high densities. I t is, 
therefore, desirable to get a rough, necessarily non
rigorous, estimate of the level width for a wider range of 
densities. At the same time, this would permit one to 
assess more precisely the region of validity of the fixed 
7 result. To this rather lengthy task we devote the 
present section. We shall, of course, maintain the 
restriction that 0 be not (appreciably) larger than 
unity. However, we shall not take the limit fi —> 0 and 
we shall not at first place a restriction on the magnitude 
ofZ. 

The approximation we shall use is the following. 
We shall assume that the major contribution to T for 
fi<l comes from the expectation value of diagrams of 
type Md with respect to an appropriately chosen wave 
function. Thus, in particular, we shall neglect the 
exchange interference diagram, Me, the contribution of 
which has been shown to be small in the fixed-7 approxi
mation. 

We neglect also, as before, all higher order mass 
operator diagrams. Since p< 1, this is a reasonable first 
approximation for the class of diagrams not involving 
external source vertices. (Multiple emission processes 
are included in this set of discarded diagrams.) Dia
grams with external source vertices, however, have 
factors of Zfi associated with them, which we do not 
assume to be necessarily small. 

We justify dropping external source diagrams on the 
grounds that the influence of the source on the decay 
of the bound hole is primarily to determine, through 
the wave functions, a distribution of momenta for the 
decay of "free" holes. 

Thus, we neglect, in particular, the possibility of the 
decay of the hole to another bound state and, more 
generally, we neglect the influence of the source on the 
final decay states and on the "coupling constants."51 

Clearly, these approximations will be poor when the 
bound state in question approaches the corresponding 
state of the isolated atom that is when the binding 

61 An approximate expression for the decay rate to a lower 
bound state is given at the end of this section. 
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energy becomes significantly larger than the Fermi 
energy. Therefore, we do not expect our results to be 
particularly meaningful beyond the range w<l.52 

We come now to the question of the choice of wave 
function. We shall attempt to make as general a choice 
as possible since the exact form of the effective 
Schrodinger equation is unknown except in the limiting 
case previously considered. 

Now, if one neglects the small nonlocal potential due 
to the mass operator, as we shall, the (radial) wave 
function falls off exponentially in position space for 
large distances with a range that depends only on the 
binding energy53 

^w(r) ^ exp[—(2w)1/2r]. (74) 

The corresponding normalized momentum-space 
wave function is 

(4r ) l 'V*(*)= (32/T)^21(2W)^/(P2+2W)2J (75) 

This is the wave function we shall adopt as a starting 
point in the present approximate calculation.54 I t has 
the interesting property that it depends only on the 
single parameter of the (relative) binding energy, w, 
rather than on the full set of parameters characterizing 
the exact solution, namely, 0, Z and the quantum 
numbers of the bound state. Of course, it gives a 
rigorous solution for the ground state of the isolated 
hydrogen atom.65 

Let us consider now in more detail the pair portion 
of IV After some elementary manipulations, Eqs. (70) 
and (59) for Td,VT(p) can be put into the following form 
in which phase-space limitations are explicitly exhibited 
in the limits of integration: 

w 2 f 

2 PJZ_ 
dzz2 

X dy 
J v 

M*,y) 

[*+PM*,y)lF+Pff(*,y) 
Ry. (76) 

62 Here and in the remainder of this section we adopt for 
notational simplicity the convention that the symbol "w" stands 
for the renormalized binding energy, a positive quantity. 

53 We have already observed that the logarithmic singularity 
of the exchange potential at p»1 is responsible for a small long-
range falloff of the wave function similar to that of the polarization 
potential. This effect actually dominates the asymptotic behavior 
of the bound-state wave function at very large distances from the 
nucleus. However, according to perturbation theory, this long-
range tail should not be important, in the high-density region, 
for expectation values such as that involved in computing the 
linewidth. 

54 The wave function (75) can be improved by taking into 
account the change in effective mass, m*, of the electron. To do 
this one should replace w by (m*/m)w. According to the lowest 
order Hamiltonian of Eq. (43), (m*/tn)= (1-J-2/3/37T)-1. 

66 The wave function (75) satisfies, of course, the relation 
(p2)~2w, the virial theorem for bound states in a Coulomb 
potential. The virial theorem goes somewhat differently for, say, 
a Yukawa potential, but one does not expect a radical change in 
this relation between the rms value of momentum and the binding 
energy. After all, for a given bound state, one can always approxi-

Here we have introduced the standard variable z=q/2. 
The variable y is the energy transfer in the decay of the 
hole divided by the momentum transfer q. / i and f2 

are, respectively, the real and imaginary parts of Qo 
multiplied by w as given by formulas (32) and (33) 
with u replaced by y. The limits of integration z± and 
y± are defined by 

r^+1 l+ (2+2^ 2 l 
^ m i n L — — 2 — i 

= max 

y + = m m 

. 2 '2(1+^)1 

•w+J w+i(p+2z)2 

2s ' 2s 
;*+l 

rw+Up+2zy 
y_=max 

L 2s -1 

(77a) 

(77b) 

(77c) 

(77d) 

f2 has the form (33a) for y less than 1 — s and the form 
(33b) elsewhere. 

In spite of the factor of 1/p in (76), this expression 
is finite in the limit p—±0 due to the limits of the y 
integration. 

I t is easy to verify from the limits of integration that 
Fd,pr(p) vanishes unless p lies in the region 

max[0, (2w+2)l'2-2']<p<(2w+2)1f2+2. (78) 

This interval always contains the point p2=2w. To 
get Td we must integrate Td(p) with the weight function 
iw2(p)dzp. Now, we see from (75) that fypw

2(p) has a 
maximum near p2=2w with a half-width for p of order 
(2w)1/2. On the other hand, Td,pr(p) has a wider 
distribution in p for small w. 

For the above reasons, we make the further approxi
mation that the pair portion of Td is adequately 
represented in the region w<l by evaluating the 
integrand at p2 = 2w: 

r d > p r = fTd>pt(p)^J(p)d^p^Td,PT(p^(2w^2). (79) 

To evaluate the right-hand side of (79) it is still 
necessary, in general, to carry out a double integration 
numerically. In a few special cases, however, this 
integration can be performed exactly or asymptotically 
or reduced to a single integral. Thus, one finds that in 
the limit p2, w -> 0 (for 05*0), 

-TdtPr(p
2~w = 0) 

2 
/•1/2 zzdz 

[s2+0/1(s,s)]2+/32/2
2(s,s) 

Ry. (80) 

mate the effect of a Yukawa potential by using a Coulomb 
potential with the appropriate "effective charge" (by averaging 
the screening factor). 



S I N G L E - P A R T I C L E E X C I T A T I O N S I N D E N S E E L E C T R O N G A S 919 

This yields the leading logarithmic term of (61) in 
the limit 0 - * O . 

For 0 = 0 and w<l/lS one obtains the asymptotic 
formula 

(7r/2)rrf n r (^ = W 2 ) ~ l/w+2 \n(l/w) 
w—>0 

• 2 1 n 2 - 4 - 1 3 / 2 4 . Ry. (81) 

For/3=0, w=% waA f=\: 

( x / 2 ) r i J , p r ( ^ = l = 2W) = f C ( 9 9 / 8 0 ) - M ] R y 
~0 .41 Ry. (82) 

Let us turn now to the plasmon portion of IV We 
neglect the dispersion of plasmon frequency and, 
therefore, consider only the first term in the expansions 
(66), (67). A simple calculation then yields the result 

-Ta.Ap)-
2 

where 

- r 1 A P e [ i - 2 ( A „ - w ) ] 

and 

Mq+/g-) 
X6(Ap-w) Ry, 

q+ = mm[_qc,p+(2Ap-2wy^, 

?_=min[fc, | /> - (2A p -2w) 1 / 2 | ] , 

? C ~ ( 1 + 2 A J , ) ' « - 1 . 

(83) 

(84) 

(85) 

Note that from momentum and energy considerations 
the plasmon portion vanishes if w is less than Ap— J or 
larger than Ap. [Ap is given by Eq. (68).] 

We are interested, of course, in the integrated 
expression 

Fd.pi- \&pTd,Ap)W(p)- (86) 

Since Tp\(p) goes to infinity logarithmically in p at 
the point p2=2(Ap—w), it is no longer a good approxi

mation to replace the weighted average (86) by the 
value of the integrand at p2=2w. Instead, one might 
try to approximate the integral by evaluating the 
square of the wavefunction at p2^2(Ap—w). This gives 
the result 

rd,pi~iMj>2==2(A : >~w)lj d?pTd,Pi(p). (87) 

The integral on the right-hand side can be evaluated 
exactly, yielding 

(T/2)Td>vi~l6wW(Ap~wy^l
qcAi-* 

X 0 ( A p - w ) 0 [ l - 2 ( A p - w ) ] R ^ (SS) 

Comparison of (88) with the results of a numerical 
integration of (86) shows that (88) is always somewhat 
too large but becomes better with increasing ft and is 
quite good for ($ in the neighborhood of unity. 

From (88) one sees that in the fixed y approximation, 
when w is of the order of 0, i y p i approaches zero like 
03/4 Ry and is, therefore, indeed of higher order than 
the pair portion of r<*, as we have previously claimed. 

The final numerical results we shall present here were 
obtained by the numerical evaluation of the double 
integral of the approximation (79) for the pair portion 
of Td and a numerical integration of (86) with the wave 
function (75) for the plasmon portion of IV A range of 
values of w and 0 lying in the interval 0 to 1 was taken. 
The results for the partial and total contributions to 
(w/2)Td are given in Table I. (See also Fig. 6.) 

The coefficient ir/2 multiplying V was chosen for 
convenience in comparing the numerical results with 
the analytical asymptotic expressions (73) and (81) 
and has no physical significance. Inasmuch as the 
probability of decay of the bound hole goes like 
exp(—2Tt) a more conventional line width parameter 
would be 2r , slightly larger than the normalization 
adopted here. 

TABLE I. Partial and total level widths vs w and j3 for bound holes. 

V 
w \ 

aoo 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

0 
b 

i n ! 
21.10 
8.33 
4.24 
2.56 
1.70 
1.20 
0.88 
0.67 
0.52 
0.41 
0.27 
0.19 
0.14 
0.11 
0.08 

( 
a 

0.96 
4.09 
7.53 
4.34 

3.1 
b 

L37 
3.59 
8.10 

10.78 
6.95 
1.98 
1.37 
0.98 
0.74 
0.56 
0.44 
0.29 
0.20 
0.15 
0.11 
0.08 

0.2 
a 

0.32 
1.46 
3.16 
4.84 
5.28 

b 

0.87 
1.74 
3.48 
5.15 
6.57 
6.78 
1.30 
1.07 
0.80 
0.60 
0.47 
0.30 
0.20 
0.15 
0.11 
0.08 

0.3 
a 

0.17 
0.79 
1.78 
2.94 
3.93 
4.22 
1.85 

b 

0.63 
1.11 
2.01 
3.12 
4.17 
5.07 
5.25 
2.78 
0.80 
0.65 
0.51 
0.32 
0.22 
0.16 
0.12 
0.09 

0.4 
a 

0.11 
0.51 
1.17 
1.99 
2.81 
3.45 
3.56 
1.88 

b 

0.48 
0.79 
1.35 
2.05 
2.87 
3.67 
4.26 
4.31 
2.59 
0.61 
0.53 
0.34 
0.23 
0.16 
0.12 
0.09 

0.6 
a 

0.06 
0.28 
0.64 
1.12 
1.65 
2.18 
2.61 
2.84 
2.38 
0.85 

b 

0 . 3 1 _ 

0.47 
0.75 
1.10 
1.57 
2.11 
2.66 
3.10 
3.32 
2.85 
1.29 
0.37 
0.25 
0.17 
0.13 
0.09 

0.8 
a 

0.18 
0.43 
0.75 
1.12 
1.51 
1.88 
2.19 
2.36 
2.10 

b 

0.22 
0.28 
0.48 
0.72 
1.03 
1.41 
1.80 
2.18 
2.50 
2.70 
2.43 
0.31 
0.26 
0.19 
0.13 
0.10 

1.0 
a 

0.54 
0.82 
1.12 
1.42 
1.70 
1.92 
2.05 
1.56 

b 

0.16 
0.20 
0.22 
0.21 
0.75 
1.02 
1.33 
1.63 
1.91 
2.14 
2.28 
1.81 
0.23 
0.20 
0.14 
0.11 

• a is the plasmon emission width in rydbergs from formula (86); b is the total width, equal to a plus pair width from formula (79); w is the ("renormal-
ized") binding energy divided by twice the Fermi energy; 0 is the ratio of the Fermi wavelength to the Bohr radius of the electron. 
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p7-( 

FIG. 6. The broken 
curves show the level 
width T as a function 
of the relative bind
ing energy, w, for 
several values of /3, 
from data of Table 
11 with straight-line 
i n t e r p o l a t i o n be
tween c o m p u t e d 
p o i n t s . P h y s i c a l 
bound holes must lie 
on the portion of 
the curves below the 
solid straight lines, 
which show the locus 
of equal level width 
and binding energy 
for each value of 0. 

The following main features of the dependence of T 
on w and /3 may be noted. In general, f or /S ̂  0.1, T begins 
at w=0 with values determined by pair emission alone, 
then increases with w and has a single pronounced peak, 
at a value of several rydbergs, to which plasmon 
emission contributes dominantly. (The pair portion is 
comparatively flat as a function of w.) The plasmon 
portion then cuts out sharply at the classical plasma 
frequency.56 T continues to fall as w increases and at 
w=l the values of V for all 0 have fallen to a roughly 
common value of about 0.1 Ry.57 

The peak value of the linewidth is lowered as /S is 
increased and it is displaced slightly toward higher 
values of w. Thus, the peak value is about 10 Ry for 
£=0.1 at w=0A5 and goes down to about 2 Ry for 
0 = 1 atw=0.50. 

For 0=0, only the pair portion contributes. V 
decreases monotonically with w starting at infinity at 
w=Q like 1/w in a manner given in detail by the 
asymptotic formula (81). 

For 0^0.6, the plasmon contribution comes in 
sharply, and in fact discontinuously in our approxi
mation, at w=(Ap—!), the minimum binding energy 
for plasmon emission. (In our units the Fermi energy 
is | ) . 

The region 0<#<0.1 is not covered by Table I. In 
this region, presumably, pair emission tends to be the 
dominant process throughout. Values of T in the 

66 Of course, the sharp cutoff on plasmon emission is partly due 
to our approximation, in which the dispersion of plasma frequency 
has been neglected. Moreover, plasmon emission could still take 
place in multiple processes, neglected here, for example the emis
sion of two plasmons or the emission of a plasmon plus an electron-
hole pair. 

67 As one sees from the form of the denominator in the pair 
emission formula (76), the reason for the lack of dependence on £ 
of the linewidth, at these comparatively large values of w, beyond 
the plasmon-emission cutoff, can be found in the rather large 
minimum momentum transfer in the decay. The latter is deter
mined by w according to formula (77b). This is also part of the 
cause for the rapid decrease in pair emission at these energies. 
Another reason for this decrease is that the solid angle (of q) for 
pair emission is continually narrowed about the "backward" 
direction (with respect to p) as w increases in order to maintain 
conservation of energy and momentum. 

X 

-O-
-O- "O 

FIG. 7. Polariza
tion diagrams enter
ing into the next 
order of perturbation 
theory. 

(b) (c) 

immediate neighborhood of w=0 should be adequately 
approximated by the fixed-'y approximation result (73) 
with p2 replaced by 2w. 

The results of Table I are interesting in that they 
show a characteristic dependence of the linewidth of 
the bound hole on the density of the system and on the 
relative binding energy of the corresponding bound 
state. 

Table I can also be used to obtain a correction to the 
Hulthen-Laurikainen criterion (48) for the existence of 
bound holes and at the same time a correction to the 
location of the edge of the physical continuum. We 
recall that the first bound-hole state must have a 
linewidth less than its binding energy to prevent the 
level from merging into the continuum. 

To investigate this point, we shall adopt values of the 
binding energy arising in the Yukawa potential approx
imation, as tabulated by Harris.58 

Keeping in mind the relation W— (2w)/fi2 between 
the relative binding energy and the absolute binding 
energy, W, in rydbergs and using the Yukawa potential 
eigenvalues of Harris,68 one finds that for the higher 
values of f$ there is a significant change in the critical 
binding condition due to linewidth. For example, for 
P—0.6 one finds that the minimum value of Z for 
bound holes to exist is changed from Z—2 (He) to 
Z = 3 (Li).59 

Some interesting points show up in this connection 
and it is worth going into the matter in somewhat 
greater detail. For fi ^ 0.3 one finds from Table I that 
W is always greater than T for w^ 0.05, though plasmon 
emission broadens the level width considerably. For 
£=0.4 to 0.6 the minimum value of w for binding, wm, 
occurs near the end of the plasmon peak at w—QA and 
0.5, respectively. For 0=0.8 and 1.0, wm occurs immedi
ately following the plasmon cutoff, wm=0.6 and 0.7, 
respectively. 

For /5= 1.0 one finds an interesting situation: A bound 
hole can also exist if w is in the neighborhood of 0.15 
(W=0.3 Ry). For still lower densities, that is, entering 
the region of ordinary metallic densities, one would 
presumably find that the domain of values of w for the 
possible existence of bound holes consists of two 
isolated intervals with the plasmon emission region 
excluded. One should, therefore, observe at these 
densities a gap in the emission spectrum of bound holes 

58 G. Harris, Table II of reference 37. 
69 This rough calculation neglects the effect of the change in 

effective mass. See also footnote 54. This would also change the 
Hulthen-Laurikainen criterion (48). 
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marked by the absence of transitions to or from bound 
states with binding energies in the single, unaccom
panied plasmon emission region (Ap—|)<w<Ap. 

From general considerations, the line width of a 
bound level should show up also in the absorption 
spectrum and, therefore, the single-particle bound 
states in question should be effectively missing. 

Because of the simplifying approximations made in 
the present treatment of the plasmon portion and since 
the region in question occurs for values of P and w 
greater than or comparable to unity, the above inter
esting prediction must be taken with a grain of salt. 
Certainly, a more accurate analysis of the plasmon 
portion, employing better wave functions and taking 
into account the dispersion of plasmon frequency, is 
justified. 

Before closing this subsection, we comment briefly 
on the region of validity of the fixed-7 approximation 
result (73). One sees from the above work that this is a 
weak-binding and high-density result whose domain of 
applicability is characterized by the fact that the 
relative binding energy, w> is appreciably less than p 
which in turn should be appreciably less than unity. 

Region of Stronger Binding 

The previous estimates of level widths can be im
proved by dropping the approximation (79) and by 
making use of more accurate wave functions as provided, 
for example, by the numerical solution of an effective 
Schrodinger equation with a Thomas-Fermi potential 
or the numerical solution of (the nonlocal) Eq. (43) 
which is somewhat better than Thomas-Fermi at very 
small and very large distances. In this way, one can 
even hope to obtain a rough approximation for the 
pair-emission and plasmon-emission rates in the strong 
binding region w>l. 

This is the appropriate place to discuss also the 
contribution to the level width of bound holes arising 
from the transition of the hole to another bound state. 
In order to estimate this effect, it is convenient to adopt 
an S-matrix point of view and regard the transition as 
taking place by means of the previous lowest order 
Feynman diagrams and "coupling constants." Thus, 
we have now initial and final bound-hole states in 
addition to a final free electron-hole pair or plasmon. 

After a brief and straightforward calculation one 
obtains in this way the approximation60 

r w ^ ~ d*qTd(q,A) 

where 

fvipytvip-qWp (89) 

Here Tu 

A=w—w'. (90) 

is the (electronic) decay rate for transition 
60 The integral involving the wave functions is essentially the 

g-momentum transform of the product of the wave functions in 
position space. It is, therefore, small unless the overlap of the 
wave functions is appreciable. 

of a hole of binding energy w to another of binding 
energy wr. $w and $»' are the wave functions of the two 
bound states. Td(qA) is the sum of the pair and plasmon 
portions of Yd{p,q) with A in those formulas replaced 
everywhere by w—w'. [See formulas (63) and (70).] 

Since in our approximation the plasmon energy is 
q independent, there will be no plasmon-emission con
tribution to Tww> unless w'—w happens to coincide with 
the plasma frequency. 

5. SUMMARY AND CONCLUDING REMARKS 

In the preceding sections we have considered some 
properties of the effective Hamiltonian entering into 
the so-called Schwinger equation or effective Schrodinger 
equation describing single-particle excitations, for the 
particular case of a dense electron gas containing a 
fixed positive point charge of atomic number Z. 
Formula (43) gives the lowest order Schwinger equation 
for this problem with respect to a perturbation expan
sion in powers of the dimensionless parameters p and 
PZ. (P is the ratio of the Fermi wavelength to the Bohr 
radius.) The lowest order energies and wave functions 
may be obtained by a numerical solution of Eq. (43). 

The lowest order equation (43) has an Hermitian and 
energy-independent effective Hamiltonian and, there
fore, is within the framework of the "h approximation" 
discussed in I. In this approximation the ground-state 
wave function is an antisymmetrized product of the 
wave functions satisfying (43) with eigenvalues less 
than the chemical potential /z. The single-particle 
excitation states are found by adding particles or holes 
in these single-electron states with excitation energies 
equal to the corresponding eigenvalues. 

We have been particularly concerned with the 
discrete spectrum of "bound-hole" excitations. One 
of the more interesting results of the present investi
gation, though not rigorously established, is the actual 
presence of a discrete spectrum and its disappearance 
beyond a certain value of the density corresponding to 
a value of the parameter y=Z2P roughly equal to unity. 

We have introduced a particular type of limiting 
process, especially appropriate to the investigation of 
the discrete spectrum, in which the parameter 7 is kept 
fixed while the parameter P approaches zero. We may 
call this the fixed-7 approximation or limiting process. 

For the fixed-7 approximation, Eq. (43) reduces 
formally in the limit p —* 0 to an ordinary Schrodinger 
equation with a Yukawa potential, formula (54), an 
equation of a type which has been intensively investi
gated in connection with the deuteron and plasma 
problems. According to the numerical work of Hulthen 
and Laurikainen,34 this equation has bound states only 
for 7 ̂ 0.898. 

In the important case of hydrogen (Z= 1) this critical 
binding condition is unfortunately not very accurate 
since it corresponds to a value of p near unity. On the 
other hand, for Z > 1 , the critical value of 7 occurs at 
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values of 0, as well as Zj3i that are appreciably less than 
unity. 

The Yukawa potential obtained by our formal 
limiting process is actually a familiar expression, due 
originally to Mott, following from a linearized Thomas-
Fermi treatment.43 

In formula (73), values were given for the lifetimes 
of bound holes for the two lowest orders of the fixed-Y 
approximation in terms of the unperturbed solutions 
of the Yukawa approximation. This calculation con
firms the important point that at least in the limit 
P —> 0 the level width is small compared to the separa
tion of bound levels. If this were not the case, the 
discrete spectrum of bound holes would have no real 
physical existence. Formula (73) shows also that the 
level width at high densities is of the order of rydbergs. 

In Sec. 4 we obtained approximate numerical esti
mates for the level width of bound holes over a con
siderably wider range of densities and source charges. 
These results are summarized by Table I. It turns out 
that in the range w<l, the line width, to a fair approxi
mation, can be expressed in terms of only two param
eters, & and w. Here w is the relative binding energy of 
the bound state—the ratio of the binding energy to 
(twice) the Fermi energy. 

Table I lists separately the important plasmon-
emission contribution to the line width. This comes into 
play, in general, as soon as one leaves the limit of very 
small binding energies and disappears for binding 
energies greater than the maximum plasmon energy, 
which is approximately the classical plasma frequency. 

The magnitude of the linewidth is responsible for a 
correction to the Hulthen-Laurikainen criterion (48) 
for the existence of bound holes. In order to prevent 
the first bound level from merging into the continuum, 
one must demand namely that it be separated from 
the continuum limit by an amount greater than the 
level width. We find, for example, that for 0 = 1 this 
linewidth effect is responsible for shifting the minimum 
value of Z for the binding of holes from Z= 1 (hydrogen) 
t o Z = 2 (helium). 

It is interesting to note that the dimensions of the 
"orbits" of bound holes can be considerably larger than 
the interparticle spacing since very weakly bound holes 
may be very remote from the nucleus. Specifically, we 
see from the form of the approximate wave function 
(74) that a measure of the range of the orbit is the 
inverse square root of the relative binding energy, w, 
while in the same units the interparticle spacing is of 
order unity. This conclusion is affected somewhat by 
the level-width correction, which requires a minimum 
value of w before the level is actually separated from 
the continuum.61 

Our calculations permit us to assess more accurately 
the region of validity of the fixed-? approximation, 

61 According to Table I the minimum value of w is about 0.5 
for 0 = 0.6 and goes down to less than 0.05 for 0=* 0.1. 

which yielded the Yukawa potential in the limit /3 —» 0. 
It appears that this approximation is valid in the 
weak-binding and high-density limit in which, more 
precisely, the relative binding energy w is small com
pared to $ which, in turn, is small compared to unity. 
This conclusion is consistent with the considerations 
needed for the Thomas-Fermi derivation of the Yukawa 
potential. 

This weak-binding limit, as we have defined it, may 
actually go beyond the region where Z& is less than 
unity, a restriction imposed by our original perturbation 
approach. This extension of the domain of validity of 
the perturbation theory may be ascribed to the fact 
that in avoiding the problem of the infrared divergence 
at low momentum transfers we have summed over an 
infinite set of polarization diagrams. 

A number of interesting and important questions 
remain open and deserve detailed study. These ques
tions are, for example, (a) a mathematically more 
rigorous delineation of the domains of validity of the 
perturbation expansion, (b) the extension of the pertur
bation calculation to higher orders, (c) alternative 
nonperturbative treatments, (d) the elaboration of the 
theoretical model to physically more "realistic" situ
ations and, finally, (e) the question of the experimental 
verification of the results concerning the single-particle 
excitation spectrum. 

In concluding the present section, we would like to 
comment briefly and qualitatively on a few rather 
isolated aspects of problems coming under the headings 
(b), (d), and (e). 

It is easy to see what diagrams are expected to 
enter into the next higher order of perturbation theory. 
Formally, at least, these are diagrams with an extra 
dotted line or external potential vertex since such 
diagrams have extra factors of $ or fiZ. These diagrams 
are the three polarization diagrams of Fig. 6 and the 
four mass-operator or exchange diagrams of Figs. 
5 (b)-5 (e). This approximation already goes beyond the 
"h approximation" discussed in I, since the operators 
corresponding to diagrams Md and Me of Fig. 5 are 
non-Hermitian and energy dependent. 

From the point of view of physical applications, the 
present ideal model has the usual advantages and 
disadvantages of ideal models: It is simple enough to 
give a rough description of a variety of physical 
situations. On the other hand, if we wish an accurate 
account of any particular physical example, the model 
must be refined and extended. 

Speaking in general terms, the model can be applied 
to situations in which a fixed or slowly moving point 
inhomogeneity of charge, or "source," is present in a 
dense neutral system composed of positive ions (the 
"background") and electrons at temperatures low 
enough that the electrons (but not the ions) form a 
degenerate Fermi gas. 

The point "source" can be either an "impurity" 
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nucleus of atomic number Z, which is the most straight
forward interpretation, or it may represent a particular 
nucleus of the background.62 

If the electron density is sufficiently high, the back
ground atoms will be completely ionized. At the lower 
densities of incomplete ionization the theoretical sepa
ration of the background is more arbitrary. In this 
case, it is natural to regard only the unbound electrons 
as belonging to the electron gas and the partially 
ionized "cores" as belonging to the background. The 
degree of ionization can be estimated, self-consistently, 
on the basis of results obtained here and the remark of 
the previous paragraph. 

The chief deficiency of the model is in the simplifying 
feature of the uniform background. In applications to 
dense crystalline matter such as metals it would be 
desirable to generalize the model by replacing the 
uniform background by a suitable static periodic 
potential. 

In applications to systems where the positive ions do 
not form a regular lattice, as in white dwarfs, it would 
be desirable to take into account the fluctuating electric 
fields due to the random motion of the positive ions.13 

ft should be mentioned also that at the high densities 
sound in white dwarfs, relativistic corrections are 
Iometimes appreciable, making a relativistic general
ization of the model desirable.13 

There are several physical processes which are 
directly sensitive to the single-particle energies, life
times, and wave functions discussed in this paper. 

One example is the x-ray emission or absorption 
spectrum of atoms in metals for bound hole to hole 
transitions. The transition energy should be given by 
the difference of the corresponding single-particle ener
gies. Because of the relatively small or moderate 
coupling of the electron system to the radiation (and 
phonon) fields, one expects that an appreciable fraction 
of the linewidth of this radiation is determined by 
interelectronic processes. 

Another example is that of orbital electron capture 
by a nucleus in a dense medium. One can picture this 
process as resulting in a bound-hole excitation of the 
electron gas. One expects then that the single-particle 
energies (in addition to determining the accompanying 
x-ray radiation spectrum) contribute additively to the 
energy of the emitted monoenergetic neutrinos. More
over, the capture rate should be proportional to the 
square of the single-particle wave function at the 
nucleus.63,64 

In principle, many details of the decay process of 
the bound hole, as implied by the estimates of Table I 

62 In both cases the system as a whole is electrically neutral and 
the potential at the origin goes like Z/r. I wish to thank Dr. W. 
Lakin for a helpful discussion of this point. 

63 H. Brysk and M. E. Rose, Rev. Mod. Phys. 30, 1169 
(1958). 

84 J. Bahcall, Phys. Rev. 26, 1143 (1962). I wish to thank 
Dr. Bahcall for sending me a preprint of this article. 

or by the general level-width formulas, are subject to 
direct experimental verification. We mention, in partic
ular, the angular correlation of the decay products and 
the branching ratio for plasmon emission. 

A specific prediction following from the numerical 
estimates given here is that for "good" metals (defined, 
of course, as those to which the present theory is 
applicable) x-ray emission or absorption lines involving 
transitions to or from a bound state with binding 
energy lying in the single, unaccompanied plasmon 
emission range should be considerably broadened or, 
preferably, missing entirely. 
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APPENDIX 

Lowest Order Evaluation of Level Width r 

We wish to evaluate the expectation values 

Ti=pTm(Mi(w)), (Al) 

in the limit p —> 0, with y fixed at a value greater than 
that needed for binding, for diagrams Md and Me of 
Fig. 5. 

The expectation values are, with respect to the 
"unperturbed" bound-state wave functions ^, solutions 
of (43). A factor of (32 is separated off for convenience 
in order that the expectation value be non-vanishing 
in the limit (3 —» 0. 

If Mi is diagonal in a momentum representation, 
which is true of diagrams Md and Me, (Al) can be 
written in the form 

I \ = 0 * Im /d*p \(f\p)\*Mi(p,w), (A2) 

where M{(p
2,w) is the diagonal element of Mi(w). 

Performing now the transformation p—*(y@)1/2p, 
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we obtain 

T^ft2Im ffflp \{^.\p)\2Mi{^p2)yftw,), (A3) 

where \//a is a normalized scaled wave function, which, 
in the limit ft —»0, is a solution of (55), and w8 is the 
corresponding discrete eigenvalue. 

As ft approaches zero with y fixed, provided that 
Mi(Qfi) exists, we obtain from (A3) 

r i-(^=0)=^2 ImMi(0,0). (A4) 

This is the same expression that we would obtain for 
the level width (inverse lifetime) of a source-free hole 
excitation of zero momentum and energy. 

It turns out that Imlf (0,0) does exist for diagram 
Me but is logarithmically infinite as ft —> 0 for M&. 
This requires one to use the more general formula 
(A3) for Md. 

Diagrams of The Type Md 

We consider first the totality of diagrams of the type 
Md with an arbitrary number of inertions in the dotted 
line. 

For reasons given in the text, the plasmon contri
bution to Yd is technically of higher order in ft than the 
pair portion and, therefore, we consider here only the 
pair portion. We take as a starting point the closed 
expression (70): 

2 r lmQo(qA) 
Md{p\w)~~ ffiq- — — H l - \ p ~ q \ l (AS) 

TJ \q2+^ftQ0(qA)\2 

According to (A3), in calculating the corresponding 
value of Ti we have also to make the replacement 

p-*(fiy)ll2p, w-*{fty)ws. (A6) 

The real and imaginary parts of Qo are given in 
(32) and (33). An examination of these expressions, 
taking into account (A6), shows that in lowest order 
in ft we can make the following replacements in (A5): 

* ( l - | * - « l ) - * ( l - « ) , (A7) 

q*+4TftQo(qAE) ~* q2+W*, (A8) 

1 
ImQoiqAE) -+ —{yft \ w81 /q+yftp*/2q+q/2}. (A9) 

27T 
Thus, 

1 2ft2 r 
M(yftp2,yftw) = / dzq 

2w T J 

(yft\w8\/q+yftpy2q+q/2) 
X 0(1-q). (A10) 

( ^ - H / S / T T ) 2 

The term q/2 in the numerator leads to a ln/3 contri
bution to T. The other terms are finite in the limit 

ft —» 0. The integrations in (A10) are elementary and 
one obtains for T, using (A3): 

r d =/3M>(V48) - l+ (T /2 )7 [ | w.| +(#2)r/2]], (All) 

where the symbol ( )y denotes an expectation value 
with respect to scaled wave functions, solutions of (54) 
with eigenvalue ws, for fixed y. 

Diagram Me 

In this case we are interested only in the limit 
ImM(0,0) which turns out to exist, of the imaginary 
part of matrix element M(p?,w) of (A2) for diagram M<?. 

The simplest way to calculate Ye to lowest order is 
to use the expressions (60) and (61) to compare the 
value of Imr e for zero momentum excitations to the 
coefficient of ln(l//3) for Td. 

Modifying these formulas for application to the 
particular case of the decay of a zero momentum and 
energy hole excitation one obtains the following 
expressions, disregarding a common constant of 
proportionality 

ImVd=[d"qf d^f{pSKq-pi) 
Jo J Pi<K\pi+q\ 

+plasmon mode, (A12) 

• 5 1 " < / / &Pl 
' 0 J pi<K\pi+q\ 

xg(P,q)g(P,Q)*(q-pi)> (Ai3) 

The factor of — J for the exchange interference diagram 
Me is due to the Pauli principle. 

Note that because of conservation of energy and 
momentum the two holes in the final state come off at 
right angles to each other. 

In (A 13), q is the "exchange momentum transfer" 
which in our case is 

q—pl—p—>p1. (A14) 

The coupling constants g to lowest order in ft are 
given by 

g (^ ) -cons t | j ? / (^+4^A)] . (A15) 

To lowest order in ft we have then from (A15), 
(A14), (A13), and (A12), dropping the plasmon mode 
and common constants of proportionality, 

Td=ft2
i fllf 

J qAJpi<i<\pi +«l 
<PpiKq-pi), (A16) 

r1 d*q r d3pi 
r.—& — / 77^(q,pi)' (A1 

./o q2Jfii<K\ti+t\ \pi\2 

') 
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In evaluating the above expressions we are concerned contributes and for this term the s integration can be 
with integrals of the form carried out immediately, yielding 

Hq)= [<Pp fV)6(\p+q\-mi-p)t(rP). (A18) I(t)~t-™ f dy f(l-y)0(y). (A24) 

Integrals of this type are easily evaluated in the Since / is less than unity the 0 function may be dropped 
following way (we again neglect constants of propor- and we obtain the final result 
tionality). 

First of all, the angular average of B(q-p) is given by l(t)~rv* f dy / ( 1 - y ) . (A25) 

1 1 f 1 1 JQ 

(6(q-p))= 8(x)dx=-—, (A19) 
qp 2 J 2qp For Md> f is unity while for Me, f(x) = 1/x. For M* 

then I(t)^t1/2=q and we verify from (A16) that Td 
where x is the cosine of the angle between q and p. diverges like ln/3 in the limit 0 —> 0. 
In the remaining factors of (A18), we can assume that From the preceding work we obtain for the ratio 
p and q are perpendicular and we obtain Te/Td in the limit 0 —> 0: 

Kq)~~ f Pdp f{jt)e{f+f-1)0(1 -#>). (A20) f^l\ m ( i / / 3 ) = _ i f\dq r(q)y (A26) 

Next we perform the change of variables w h e r e t h e r a t i o f (^ i s g i v e n b y 

s-pt t=f. (A21) _ l n ( 1 _ 0 _ l n ( w ) 

Substituting this into (A20), we obtain r(q)= / / / dy= = . (A27) 
Jol—yl Jo t q2 

/ (O^r 1 ' 2 f ds f(s)d(s+t-1)0(1-*). (A22) Thus 

/ r e \ rldt /<n*\ 
We employ now the partial integration formula ( — ) ln(l/^)== — i / — [ - l n ( l - 0 ] = - l l — )• (A28) 

d(s+t-l)=d(s-l)+ I dy6(y+s-l). (A23) Since, from (All), the coefficient of ln(l/0) for Td is 
Jo $2/ir we obtain from (A28) the final result 

If we substitute this into (A22), only the second term Te= (^2/T)(-1)(TT2/6). (A29) 


